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ABSTRACT 
 

Bio signals based control system has been employed into the biomedical devices and prosthetic limbs for improving 

the life of severely disabled and elderly people. In this paper, a Brain computer interface (BCI) is presented using 

steady state evoked potential (SSVEP) for comparison of accuracy of four movements i.e. forward, backward, right 

and left of brain signals. The performance of subjects is analyzed with four classifiers at different fatigue levels. The 

experiment when performed using various classifiers resulted in different accuracy. 
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I. INTRODUCTION 

 

Brain computer interface (BCI) is an advanced 

technology for communication and is highly used to 

establish a direct link between computer and the human 

brain [1,2]. People who are severely disabled and lose 

their voluntary muscular movements are unable to 

participate in the mainstream of society and feel 

deprived and isolated. Brainstem stroke, amyotrophic 

lateral sclerosis (ALS), spinal cord injuries and other 

diseases impede the function and movement of the 

muscles [3].  Therefore, the BCI systems provide 

assistance and control of the muscular movements to all 

such people. The electrical brain signals play vital role 

and can be used for detecting and analysing the 

intentions of the people. In real time applications, a BCI 

system should work in asynchronous mode i.e. the 

system works only when user wishes to operate and is 

not bounded by any predefined protocol as in cue based 

synchronous BCI. SSVEP is utilized for the proposed 

BCI where electrical potential differences are extracted 

from the scalp after a visual stimulus. Depending upon 

application and requirement of the system, the number 

and structure of the stimulus can be varied. In SSVEP, 

multiple classes can be defined without using much 

training because the subject has to just shift his/her gaze 

to various stimuli. Hence, it can be used in multiple 

applications where more number of movements are 

required. Transient VEPs occur at frequency below 3.5 

Hz and When Stimulation frequency is greater than 3.5 

Hz then VEPs are called as steady state VEPs. At steady 

state condition the individual responses are overlapped 

and apparently equal frequency as stimulus [4][5]. The 

main goal is to detect this frequency accurately and 

reliably, and also detect the frequency which is not 

present i.e. when the person does not gaze at the 

stimulus. 

 

II.  METHODS AND MATERIAL  
 

A. EEG Experiment 

 

1. Subject 

 

Four healthy male volunteers, aged between 18 and 29, 

and had normal vision participated in the experiment. 

Initially, subjects took full rest before the 

experimentation and were asked to quiet and relaxed 

during the experiment. Subjects were seated in a 

comfortable armchair in a slightly dimmed room in 

front of the stimulation unit (SU). 

 

2. Stimulation unit (SU) 

 

Stimulation unit, a 13x13 cm box (as shown in figure1) 

equipped with four LEDs, provides the visual 

stimulation for training. The frequency and the pattern 

of the LEDs are directly controlled through computer. 

Each stimulating LED has a diameter of 9 mm and a 

light intensity of 1550 mcd. Also, each stimulating LED 
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is accompanied by a small LED indicating on which 

stimulating LED the user has to shift his sight next. 

Between the two trials there is sufficient time given to 

the user to switch his focus on next LED. 

 

 
Figure1. Stimulation Unit 

 

3. Data Acquisition 

 

Eight electrodes are used to acquire the signals from the 

subjects and placed over visual cortex according to 

international 10-20 system. The positions of electrodes 

(as shown in figure 2) are PO4, PO3, P08, PO7, O1, O2, 

OZ, POZ whereas right ear lobe and Fpz are used as 

reference and ground respectively. Abrasive gel is used 

for proper connection between electrodes and scalp and 

also to maintain impedance of electrodes below 5Ω. The 

electrodes are connected to the EEG amplifier 

(g.USBamp, g.Tech medical engineering, Austria) 

which fed the signals over a USB connection into the 

computer directly.  

 

 
Figure 2. Placement of EEG Electrodes 

 

 

 

B. Signal Processing 

The signals are acquired through eight channel EEG 

system with 256 Hz sampling rate. The raw EEG data 

has many artefacts and they affect the accuracy and 

performance of the system. Hence, a band pass filter of 

frequency range 0.5 to 30 Hz is used to filter all the 

noises and artefacts from the signals.  

 

In SSVEP, the voltage between a reference electrode 

and an electrode „i‟ when subject is gazed at stimulus 

can be estimated as: 

 

  ( )  ∑ (       (           ))

    

   

  ( ) 

 

where 0 ≤ t < T, b, T and Nh are the number of 

harmonics, noise and number of harmonics. (ai,k) and 

(φi,k) are the amplitude and phase of each electrode. 

There are several sources of noise such as 

environmental effects, physical disturbances, improper 

connections of electrodes with scalp. Hence, main goal 

is to improve signal to noise ratio and detection of 

desired frequency.  A channel c is used as a linear 

combination of the signals measured by the My 

electrodes. c is defined by: 

 

 ( )  ∑       

  

   

( ) 

 

Where, 0 ≤ p < Ns and Ns is the number of channels. 

The first goal for EEG signal processing is to find an 

optimal set Ui,p , 1≤ i < My  where desired frequency is 

present.  

 Figure 2. Simulink Model of SSVEP Paradigm 
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The minimum energy combination is used to cancel the 

noises as much as possible by combining not only pairs 

of electrodes but also arbitrary number of electrodes. 

The Simulink model for SSVEP is shown in Figure3 

where various blocks are interconnected to make real 

time paradigm. Discrete Fourier transform(DFT) 

provides us the frequency analysis of the signals so that 

power can be calculated which helps in evaluation of 

features of the signals. these features are fed to the 

classifiers for better evaluation of the results. 
 

III. RESULTS AND DISCUSSION  
 

The experiment when performed using various 

classifiers and varied fatigue levels resulted in different 

accuracy means. At 10% fatigue level, the percentage of 

accuracy using linear discriminant analysis (LDA) with 

subjects 1,2,3 and 4 resulted in 92.20, 90.40, 88.25 and 

87.64% respectively. However, the mean accuracy 

using Learning vector quantization (LVQ) was 82.96%. 

Similarly, using K-nearest neighbor (KNN) and Support 

vector machine (SVM), the percentage accuracy came 

out to be 81.87 and 88.96% respectively as shown in  

 

Table 1. TABLE1. PERCENTAGE ACCURACY 

WITH 10% FATIGUE LEVEL 

Classifier Sub

ject 

1 

Subj

ect 2 

Subj

ect 3 

Subjec

t 4 

Mean 

accurac

y 

Linear 

discrimina

nt analysis 

(LDA) 

92.

20

% 

90.40

% 

88.25

% 

87.64

% 

89.62% 

Learning 

vector 

quantizatio

n (LVQ) 

88.

25

% 

82.36

% 

81.24

% 

80.00

% 

82.96% 

Support 

vector 

machine 

(SVM) 

81.

12

% 

84.85

% 

82.25

% 

79.26

% 

81.87% 

K-nearest 

neighbor 

(KNN) 

91.

21

% 

88.40

% 

87.34

% 

88.90

% 

88.96% 

Also, after whole day experimentation when the 

subjects were tired and their fatigue level reached 

somewhat between 60-70%, the accuracy percentages 

were again measured. It came out to be 64.48, 58.12, 

54.48 and 61.94% respectively as shown in Table 2 for 

the same order of classifiers as used above. So, it can be 

deduced that the percentage accuracy of the subjects 

reduces with the increasing fatigue level. Also, LDA 

comes out to be the classifier with best percentage 

accuracy followed by KNN. 

 

TABLE 2. PERCENTAGE ACCURACY WITH 60-70% 

FATIGUE LEVEL 

 

Classifier Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Mean 

accura

cy 

Linear 

discrimina

nt analysis 

(LDA) 

62.23% 64.34% 66.24% 65.12% 64.48% 

Learning 

vector 

quantizati

on (LVQ) 

58.34% 56.78% 59.12% 58.22% 58.12% 

Support 

vector 

machine 

(SVM) 

52.23% 54.34% 56.24% 55.12% 54.48% 

K-nearest 

neighbor 

(KNN) 

60.34% 61.78% 64.30% 61.35% 61.94% 

 

IV.CONCLUSION 

 
The study was conducted to analyse the performance 

and accuracy of the designed BCI system using various 

classifiers. Accuracy always plays an important role in 

real time application systems. Each classifier has its 

own methodology and computational procedure for 

analysing the signals. In our study, Linear discriminant 

analysis (LDA) provided us highest accuracy among all 

other classifiers at various fatigue levels.  

 

V. REFERENCES 

 
[1] J. J. Vidal, “Toward direct brain.–computer 

communication,” Annu. Rev. Biophys. Bioeng., 

vol. 2, pp. 157–180, 1973. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  154 

[2] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. 

Pfurtscheller, and T. M. Vaughan, “Brain–

computer interfaces for communication and 

control,” Clin. Neurophysiol., vol. 113, pp. 767–

791, 2002. 

[3] J. R. Wolpaw, N. Birbaumer, D.J. McFarland, G. 

Pfurtscheller, T. Vaughan. Brain-computer 

interfaces for communication and control. Clinical 

Neurophysiology, 113: 767-791, 2002. 

[4] W. Paulus. Elektroretinographie (ERG) und 

visuell evozierte Potenziale (VEP). In: H. 

Buchner, J. Noth, (eds.): Evozierte Potenziale, 

neurovegetative Diagnostik, Okulographie: 

Methodik und klinische Anwendungen. Thieme, 

Stuttgart – New York, 57-65, 2005. 

[5] J. K. Chapin, K.A. Moxon, R.S. Markowitz, 

M.A.L. Nicolelis, Real-time control of a robot 

arm using simultaneously recorded neurons in the 

motor cortex, Nature Neuroscience 2 (1999) 664–

670. 


